

History of the Evolution of High Resolution Tools and Methods for Groundwater Monitoring

Dr Gary Wealthall

Selected Figures and Images courtesy of Dr John Cherry and indicated by

Geosyntec.com

engineers | scientists | innovators

Presentation Outline

- A Brief History of [MLS] Time
- MLS Well Design
- Advancing Process Understanding
- Closing Comments

A Brief History of [MLS] Time

A Brief History of (MLS) Time

Traditional Wells

Westbay [1978]

Waterloo [1987]

Flute [1994]

1990

Solinst CMT [1999]

1950

1970

Cherry and Johnson, 1982

Cherry et al., 2007 Thornton and Wealthall, 2008

2010

MLS Well Design

How Many Ports Are Needed?

This is generally unknown at all sties before use of the MLS begins

"You never know what is enough unless you know what is more than enough"

-William Blake – English Poet (1757 to 1827)

Therefore, start with as many ports as is practical

Determining MLS port spacing

Sparse profiles are typically misleading and often useless

Sampling Density (Bedrock)

Essential Factors Concerning Selection of a Multi Level System

- Type of geology
- 2. Maximum depth
- 3. Hole conditions
- 4. Depth to water table
- 5. Expected head differentials
- 6. Number of ports needed
- 7. Permanent or temporary
- 8. Chemical reactivity

- 9. Transducer or manual WL readings
- 10. Sample volume required
- 11. Purging needed or not
- 12. Sample exposure minimization
- 13. Complexity of installation method
- 14. Simplicity/speed of sampling
- 15. Quality assurance/reliability
- 16. Types of drilling machines available

Advancing Process Understanding

Refining Understanding of Groundwater Contamination

Fully-screened wells (integrated)

Multilevel samplers (point source)

Increasingly Sophisticated Remedial Technologies Demand More Sophisticated Well Completions

MLS Wells Revealed that Narrow DNAPL Source Zones Lead to Narrow Plumes

MLS Transects to Quantify Hydraulic Parameters

Tracer Test MLS Transects

Geosyntec.com

engineers | scientists | innovators

T5: Scale and velocity dependent α_L

$$\bar{v} = 1.44 \text{ m/d}$$

 $\alpha_1 = 0.43 \text{ m}$

$$\bar{v}$$
 = 2.99 m/d α_1 = 0.09 m

5000

TCE

Use of MLS Wells for Flux-Based Assessments

200

TCE

500

cDCE

2000

cDCE

Closing Comments

Why are we Still Discussing MLS technologies?

- The commercial industry is still relatively small, although MLS systems are now mature
- There are few, if any, comprehensive publications concerning the use of MLS systems
- The professional community of groundwater scientists and engineers is still under-educated about the value of the data obtained from MLS wells and may be unprepared for the level of sophisticated decision making needed to properly select and use MLSs
- There are many ways to fail when installing a multi-level system and to avoid failure requires careful planning and support by highly qualified field technicians and drill crews

MLS education should be a prerequisite in the training of hydrogeologists

Geosyntec

Thank you for your attention

Round Table Discussion: Full Panel & Attendees

Round Table

MLS systems

- Where next?
- Acceptance of flux versus concentration metrics
- Provision of best practice guidance

Fractured Bedrock Characterization

- What are the key factors that limit characterization (and eventually the remediation) of bedrock groundwater systems
- How do we maximize the use of fractured bedrock research sites?

Education and Awareness

- How do we translate research findings to best practice?
- Development of Standard Protocols
- Cost Benefit Assessment
- Professional Accreditation